W and Z Boson Production at NNLO with *FEWZ* 2.0

Seth Quackenbush Argonne National Laboratory

with R. Gavin, Y. Li, and F. Petriello arXiv:1011.3540 [hep-ph] and WIP

Outline

- Z and W bosons at the LHC
- Why NNLO?
- An introduction to FEWZ
- New and improved!
- The new FEWZ at work
- Return of the W
- Summary

Z bosons at the LHC

- No new physics yet, but 'rediscovery' of standard model complete at LHC
- Naturally, Z was found

Z candidates

Real Data... Tevatron

Real data... LHC!

Early Z results

- ATLAS: $\sigma \times Br(II) = 0.84 \pm 0.06(stat) \pm 0.05(sys) \pm 0.09(lum) nb$ (66 – 116 GeV)
- CMS: $\sigma \times Br(ll) = 0.975 \pm 0.007(stat) \pm 0.007(sys) \pm 0.039(lum)nb$ (60 - 120 GeV)
- Tens of thousands of events by now!

Early W results

- ATLAS: $\sigma \times Br(ll) = 9.96 \pm 0.23(stat) \pm 0.5(sys) \pm 1.1(lum)nb$
- CMS: $\sigma \times Br(ll) = 10.31 \pm 0.002(stat) \pm 0.009(sys) \pm 0.41(lum)nb$
- Hundreds of thousands of events by now!

Why look at the Z?

- Lots of them, millions at design luminosity
- Clean signal, stands above QCD
- Use as standard candle/luminosity measure
- Use to constrain PDFs

Z as standard candle

- Easy to measure
- Well-known properties (M_z, Γ_z) calibrate
- σ₇ Luminosity measure

Z Physics

- Measure electroweak parameters from distributions -- sin²θ_w
- Perturbative QCD p_r spectrum
- Measure PDFs with rapidity distributions

$$x_1 \simeq \frac{M_Z}{\sqrt{s}} e^{Y_Z}$$

$$x_2 \simeq \frac{M_Z}{\sqrt{s}} e^{-Y_Z}$$

W Physics

- Charge asymmetry → PDFs
- W mass for electroweak precision, indirect constraints on new physics

Why NNLO?

- NLO DY well-known, but remaining theory errors O(10%)
- As much statistics as you want, systematics much smaller than theory error
- Some observables only start at NLO (p_τ, Δφ)

Why NNLO?

- Precise measurements require precise theory
 - PDFs
 - Luminosity
 - Electroweak competitive with LEP
- Experimental physics should never be theory-limited
- Fortunately, NNLO has been available for DY for a while Hamberg, van Neerven, Matsuura

Differential NNLO

- Can we just use a Kfactor?
- Distributions and acceptances have differing higher-order corrections

Anastasiou, Dixon, Melnikov, Petriello

FEWZ basics

- Computes W/Z cross section for hadron colliders
- Fully exclusive in leptonic phase space at every order
 - Leptonic decays contain full W/Z spin correlations
 - Cuts on leptons, not Z

Old FEWZ code details

- Fortran 77 numerical program
- Two executables, FEWZw and FEWZz, for W &
 Z
- Some run parameters selectable in input file
 - Collider type
 - Perturbative order
 - Numerical integration parameters

Old FEWZ at work

 Fully differential distributions with realistic detector cuts!

Basics of the calculation

(Melnikov, Petriello)

Differential cross section given by factorization:

$$d\sigma = \int dx_1 dx_2 f_i(x_1) f_j(x_2) d\sigma_{ij}$$

- Each piece has many components
 - Partonic cross section to $O(\alpha_s^2)$ (gg, gq, qq)
 - PDF counterterms
- Singularities everywhere
 - Renormalization
 - Soft/collinear, PDFs

Pieces of the calculation

- NNLO:
 - Double-virtual
 - Real-virtual
 - Real-real
- First two pieces dealt with using AIR Anastasiou, Lazopoulos
 - Reduces loop integrals (including multi-loop) to less complicated forms using IBP identities

Pieces of the calculation

- Real-real parts require a method to deal with IR (soft/collinear) singularities
- Sector decomposition Binoth, Heinrich; Anastasiou, Melnikov, Petriello
 - Map denominators into hypercube variables to be integrated over
 - Make sure each variable is singular in only one limit by remapping as necessary

- Expand
$$x^{-1+\epsilon} = \frac{\delta(x)}{\epsilon} + \sum_{n=0}^{\infty} \frac{\epsilon}{n!} \left[\frac{\ln(x)}{x} \right]_{+}$$

Putting the pieces together

- Approximately 200 pieces corresponding to
 - different partonic channels (qq, qg, gg)
 - real radiation sectors from decomposition
 - soft/collinear counterterms+virtual pieces
- Rest summed and interfaced with PDFs in numerical integrator

Drawbacks of old FEWZ

- Only one number per run
- Lengthy runtime, especially for harsh cuts
- Cuts hard-coded in Fortran by user
- Some numbers hard-coded, such as EW parameters
- Any of these changes require recompilation

Improved FEWZ

- Split different sectors and calculate independently
 - Sectors have different PDFs and kinematics, let integrator adapt separately
 - Exception: some sectors anticorrelate
 - Calculations basically independent, can use parallelism

Improved FEWZ

- Each call of phase space from numerical integrator corresponds to real kinematics
 - Bin each evaluation on-the-fly
 - Reweight each evaluation for different PDF eigenvector sets – free PDF errors!
 - FEWZ now produces user-selectable histograms with PDF errors with little overhead

Improved FEWZ

- Practically everything a user would want is moved to a text input file
 - No more Fortran coding, recompilation
- Practically everything a user would want is provided in a text output file
 - Kinematic distributions, scripts for PDF errors
- Scripts provided for multicore runs, Condor cluster runs, combining runs

User-selectable cuts

- Invariant mass
- Jet reconstruction (anti-k_T, cone), isolation
- Transverse momentum (lepton, Z, jets)
- Rapidity (lepton, Z, jets)
- Etc.

User-selectable histograms

- Lepton, Z, jet transverse momentum
- Lepton, Z, jet rapidity
- Dilepton invariant mass
- ΔR
- H₊
- etc.

Available PDFs

- MSTW
- CTEQ
- JR
- ABKM
- NNPDF
- i.e, all of them

Performance

- Faster, even per-core
- Numerical precision sub-dominant in a day, not weeks
- Hundreds of numbers instead of one

LHC 7 TeV benchmarks

• Inclusive numbers:

- MSTW: σ =963.7 $\pm_{6.8}^{4.9}(scale) \pm_{17.9}^{24.3}(PDF) \pm 0.5(tech) pb$
- ABKM: $\sigma = 980.5 \pm 15.6 \, pb$
- JR: $\sigma = 907.3 \pm_{20.9}^{17.9} pb$

LHC 7 TeV benchmarks

Standard cuts:

$$-p_T^{lep} > 25 \text{ GeV}$$

$$- |\eta^{lep}| < 2.5$$

$$-\Delta R > 0.5$$

- MSTW:
$$\sigma = 436.0 \pm_{8.7}^{11.5} pb$$

- ABKM:
$$\sigma = 445.6 \pm 7.6 \, pb$$

- JR:
$$\sigma = 404.3 \pm_{11}^{7.9} pb$$

Inclusive distributions

 Note JR consistently lower

Inclusive distributions

Inclusive distributions

Collins-Soper angles

 Code can also calculate coefficients of Collins-Soper expansion

$$\frac{d\sigma}{dp_T^2 dY d\cos\theta d\phi} \sim 1 + \cos^2\theta + \frac{1}{2}A_0(1 - 3\cos^2\theta)$$

$$+ A_1\sin 2\theta \cos\phi + \frac{1}{2}A_2\sin^2\theta \cos 2\phi$$

$$+ A_3\sin\theta \cos\phi + A_4\cos\theta$$

Only A₄ nonzero at LO

Collins-Soper angles

Collins-Soper angles

Distributions with cuts

- Realistic acceptance cuts real test of FEWZ
- Experiments should not use flat K-factor, should reweight with distribution

Distributions with cuts

Relevance for new physics

Return of the W

- FEWZ 2.0 updates Z code–2.1 will feature W
 - Most of calculation is the same, large amounts of overlapping code
 - Similar changes: sector splits/parallelization, histogramming, PDF errors
- Basic structure is done, now optimizing sector splitting
- Combination scripts can do charge asymmetry, W/Z ratio

Preliminary W plots

Summary

- Understanding basic processes is understanding unknown processes
- Precision is key
- FEWZ is a tool that gives as much theoretical precision as possible
- Updates make it user-friendly and powerful
- Try FEWZ! http://gate.hep.anl.gov/fpetriello/FEWZ.html

The future

- Finish up that W! Hope to have public code in O(1 month)
- Electroweak corrections comparable to $O(\alpha_s^2)$, important especially for FSR observables, known
 - Incorporation into FEWZ in progress

Perturbative stability

